
Am J Stem Cells 2020;9(3):25-35
www.AJSC.us /ISSN:2160-4150/AJSC0112726
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Hair cell regeneration from inner ear  
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Abstract: Cochlear hair cells (HCs) are the mechanoreceptors of the auditory system, and because these cells 
cannot be spontaneously regenerated in adult mammals, hearing loss due to HC damage is permanent. However, 
cochleae of neonatal mice harbor some progenitor cells that retain limited ability to give rise to new HCs in vivo. Here 
we review the regulatory factors, signaling pathways, and epigenetic factors that have been reported to play roles in 
HC regeneration in the neonatal mammalian cochlea.
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Introduction

Sensorineural hearing loss, one of the most 
common health problems around the world, is 
mainly caused by cochlear hair cell (HC) dam-
age or loss [1]. In non-mammalian vertebrates, 
such as birds and fish, HCs can be spontane-
ously regenerated from supporting cells (SCs) 
after damage [2-4]. However, HCs in the adult 
mammalian cochlea cannot be spontaneously 
regenerated, and only neonatal cochlear HCs 
have a limited capacity for regeneration [5, 6]. 
Damaged mammalian vestibular organs can 
also generate new HCs from SCs in limited 
numbers [7-9]. It has been reported that pro-
genitor cells can be isolated from the auditory 
and vestibular organs of the inner ear and can 
form spheres and self-renew in vitro [10-13]. 
HCs are regenerated through two mechanis- 
ms. In mitotic regeneration, inner ear progeni-
tors re-enter the cell cycle, divide mitotically, 
and then differentiate into new HCs. In direct 
trans-differentiation, inner ear progenitors swi- 
tch cell fate and directly differentiate into new 
HCs [14-16]. We will focus in this review on the 
mechanisms through which transcription fac-

tors, regulatory factors and signaling pathways 
regulate HC regeneration.

Inner ear progenitors in the neonatal cochlea

In recent years, researchers have found that 
the SCs of the cochlea have certain ability for 
proliferation and differentiation, and as de- 
scribed above, these cells can first divide and 
then differentiate into HCs or they can trans-
differentiate directly into HCs [10, 17]. White et 
al. isolated P27+ transgenic neonatal mouse 
cochlear SCs and tested the ability of the cell 
cycle re-entry and HC regeneration [10]. The 
presence of both BrdU+ and BrdU- regenerated 
HCs indicated that SCs can generate new HCs 
through both direct differentiation and mitotic 
pathways [10, 18]. 

Leucine-rich repeat-containing G-protein cou-
pled receptor 5 (Lgr5), a Wnt signaling down-
stream target gene, has been reported to be a 
progenitor/stem cell marker in many other tis-
sues [19, 20]. Chai et al. and Shi et al. both 
reported that cochlear Lgr5+ cells, a subset of 
SCs including inner pillar cells, inner border 
cells, third-row Deiters’ cells, and the lateral 
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greater epithelial ridge (Figure 1), are the inner 
ear progenitors in the neonatal mouse cochlea 
[21, 22]. These Lgr5+ progenitors have been 
shown to regenerate HCs in the neonatal 
cochlea both in vivo and in vitro, and Wnt sig-
naling induction either by Wnt agonists or in 
β-catenin overexpression transgenic mice pro-
motes the proliferation of Lgr5+ progenitors 
and HC regeneration [21, 23]. 

In another study, Jan et al. used reporter mice 
for Axin2 gene, which is a downstream negative 
feedback gene of the Wnt signaling pathway 
[24], and showed in both in vitro cell culture 
and in vivo animal experiments that Axin2+ 
tympanic border cells have similar characteris-
tics as cochlear progenitors. These cells can 
proliferate into cell colonies and can be differ-
entiated into SCs and HCs. Moreover, the ability 
of these Axin2+ cells to proliferate and differen-
tiate can be induced by Wnt agonists and sup-
pressed by Wnt inhibitors, similar with Lgr5+ 
progenitors. Therefore, it is suggested that 
Axin2+ cells might also be a potential source of 
progenitors for treating hearing disorders.

Recently, two other genes have been reported 
to be novel inner ear progenitor markers. The 
first is Lgr6, which is also a Wnt-signaling do- 
wnstream target gene. Lgr6+ cells, which only 
include inner pillar cells in the neonatal mouse 
cochlea, are a subpopulation of Lgr5+ progeni-
tors, and Lgr6+ cells can generate Myosin7a+ 

both in vivo and in vitro. Moreover, Frizzled9+ 
cells have a similar capacity for proliferation, 
differentiation, and HC generation as Lgr5+ 
progenitors [27].

In summary, the discovery of inner ear progeni-
tors has provided a new approach for cell trans-
plantation therapy. As mentioned above, there 
are two mechanisms for HC regeneration. One 
is trans-differentiation in which the inner ear 
progenitors switch cell fate to become HCs, and 
the other is mitotic regeneration in which inner 
ear progenitors proliferate and then differenti-
ate into new HCs. Many transcription factors 
and signaling pathways are reported to be in- 
volved in the development of the inner ear, and 
several factors have been shown to be involved 
in HC regeneration in the neonatal mouse 
cochlea, including Atoh1, p27Kip1, pRb, Foxg1, 
and the Wnt, Notch, Hedgehog, and Ephrin sig-
naling pathways (Figure 2).

HC regeneration: transcription factors and 
regulatory factors

Atho1 (also called Math1) is a helix-loop-helix 
transcription factor that is essential for HC dif-
ferentiation. The expression of Atoh1 is visi- 
ble from embryonic day 14.5 in the cochlea. 
Deletion of the Atoh1 gene leads to the failure 
of HC formation, while its overexpression in- 
duces ectopic HCs [28, 29]. Atoh1 also plays 
important roles later during inner ear develop-

Figure 1. Illustration of the mammalian cochlea. The red cells are HCs, and 
the green cells are Lgr5+ progenitors. IHC, inner hair cell; OHC, outer hair 
cell; GER, greater epithelial ridge; LER, lesser epithelial ridge; DC, Deiters’ 
cell; OPC, outer pillar cell; IPC, inner pillar cell; IPhC, inner phalangeal cell; 
IBC, inner border cell.

HCs in vitro in a similar man- 
ner as Lgr5+ progenitors [25]. 
The same number of isolated 
Lgr6+ cells generates signifi-
cantly more Myosin7a+ HCs 
compared to Lgr5+ progeni-
tors, while Lgr5+ progenitors 
form more cell spheres than 
Lgr6+ cells in vitro [26], which 
suggests that Lgr6+ cells have 
greater ability for differentia-
tion and lesser ability for pro- 
liferation compared to Lgr5+ 
progenitors. Another reported 
inner ear progenitor marker is 
Frizzled9, which is a Wnt re- 
ceptor gene. Frizzled9 is ex- 
pressed in inner phalangeal 
cells, inner border cells, and 
third-row Deiters’ cells in neo-
natal cochlea, and Frizzled9+ 
cells could regenerate HCs 
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ment in HC survival and maturation [30, 31].  
In neonatal mice, Atoh1 is also important by 
promoting HC regeneration, and ectopic acti- 
vation of Atoh1 induces new HCs generation in 
young postnatal mice [32, 33]. Moreover, in the 
young adult deafened guinea pig model, forc- 
ed expression of Atoh1 induces HC regenera-
tion and decreases the hearing threshold [34]. 
However, only a subset of these cells is able to 
give rise to new HCs, and they do so only at 
early postnatal stages.

Cyclin-dependent kinase inhibitors (CKIs) are 
divides into two families, the Cip/Kip family and 
the Ink4 family, which play roles in governing 
cell cycle transitions and maintaining postmi-
totic state of numerous cell types [35, 36]. 
p19Ink4d (Cdkn2d) and p21Cip1 (Cdkn1a) have 
been shown to be required in maintenance of 
the postmitotic state of HCs [37, 38]. p27Kip1 
(Cdkn1b), begins to be expressed in prosenso- 
ry cells during the embryonic development of 
the mammalian cochlea, and it persists at high 
levels in SCs of the mature organ of Corti [39, 
40]. Deletion of the p27Kip1 gene in the mouse 
cochlea results in continuous cell proliferation 
in the postnatal and adult mouse cochlea and 
to the appearance of supernumerary HCs and 
SCs [39, 41]. Deletion of p27Kip1 in SCs of the 

neonatal cochlea leads to the proliferation of 
pillar cells without cell fate conversion [42-44], 
which suggests that other factors are required 
to induce the differentiation of SCs into HCs. 

pRb is a retinoblastoma protein encoded by the 
retinoblastoma gene Rb1 and plays important 
roles in cell cycle exit, differentiation, and sur-
vival [45, 46]. And it has been shown that dele-
tion of Rb1 gene leads to the cell-cycle re-entry 
of both embryonic and postnatal mammalian 
HCs [47-49]. In neonatal mice, inactivation of 
pRb in SCs results in cell cycle re-entry of both 
pillar and Deiters’ cells and an increase in the 
number of pillar cells. The nuclei of Rb-/- mitotic 
pillar and Deiters’ cells were observed to mi- 
grate toward the HC layer and these cells divide 
near the epithelial surface, similar to the SCs  
in the regenerating avian cochlea. However, 
there are no newly regenerated HCs, and SC 
death followed by HC loss occurs [50].

Foxg1 (formerly called BF-1), one of the fork-
head box family proteins, is involved in mor- 
phogenesis, cell fate determination, and prolif-
eration in many tissues, especially in the brain 
[51-55]. Foxg1 knockout mice die in the peri- 
natal period and show shortened cochleae wi- 
th multiple extra rows of HCs and SCs along 

Figure 2. The regulation of HC regeneration in the neonatal mammalian cochlea after HC damage. HCs are regener-
ated through mitotic regeneration-in which progenitors re-enter the cell cycle, mitotically divide, and then differenti-
ate into new HCs-or through direct trans-differentiation in which progenitors switch cell fate and directly differentiate 
into new HCs.
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with vestibular defects [56, 57]. It was recently 
reported that conditional knockdown of Foxg1 
in SCs and progenitors in neonatal mice induc-
es their direct trans-differentiation, but not 
their proliferation, and subsequently leads to 
extra HCs [58].

HC regeneration: signaling pathways

During cochlear development, the canonical 
Wnt/β-catenin signaling pathway regulates cell 
proliferation, cell fate decision, and HC differ-
entiation, and Wnt signaling activation induces 
inner ear progenitor proliferation and HC regen-
eration in both mammalian and non-mammali-
an vertebrates [59, 60]. The inhibition of Wnt 
signaling in the embryonic mouse cochlea by 
small molecule inhibitors or in transgenic mice 
reduces the proliferation of prosensory cells 
[61]. Conversely, Wnt signaling activation pro-
motes the prosensory domain formation and 
increases the number of HCs [62]. As men-
tioned above, Lgr5 and Lgr6, the Wnt signaling 
downstream targets, are expressed in embry-
onic and neonatal inner ear progenitors [22, 
25]. And these progenitors can act as inner  
ear progenitors both in vivo and in vitro due to 
their ability of self-renew, proliferation, and dif-
ferentiation into HCs [21, 23, 63, 64]. In neona-
tal cochlea, both Wnt agonists treatment and 
β-catenin overexpression promote the prolifer-
ative capacity of Lgr5+ progenitors and subse-
quent HC formation, whereas Wnt antagonists 
treatment reduce the proliferation and HC re- 
generation ability of Lgr5+ progenitors [23, 62, 
65]. Wnt activation also causes the Axin2+ tym-
panic border cells to proliferate and differenti-
ate into HCs and SCs in newborn mice [24].  
The combined expression of β-catenin and At- 
oh1 in Lgr5+ cells increases the HC regenera-
tion capacity of the postnatal cochlea by ten-
fold, and these newly regenerated HCs can sur-
vive until adulthood [66]. However, the com-
bined expression of β-catenin and Atoh1 can-
not induce HC regeneration in the adult mam-
malian cochlea.

Because Notch signaling pathway plays impor-
tant roles in HC differentiation during inner ear 
development, many researchers have exam-
ined its roles in HC regeneration in postnatal 
cochlea. In both the zebrafish lateral line and 
mature avian basilar papilla, inhibition of Notch 
signaling increases HC regeneration through 

SC mitotic division and direct trans-differentia-
tion. In contrast, Notch activation maintains 
SCs in a quiescent state, thereby inhibiting 
regeneration of HCs [67, 68]. In the mamma- 
lian postnatal cochlea, the Notch inhibition by 
γ-secretase inhibitor upregulates Atoh1 expres-
sion and results in the trans-differentiation of 
adjacent SCs into HCs [69, 70]. Li et al. report-
ed a direct interaction between the Notch and 
Wnt signaling pathways, that Notch inhibition 
induces mitotically generated HCs in mamma-
lian cochleae via activating the Wnt pathway 
[71]. In addition, Notch and Wnt co-regulation 
promotes SC proliferation and HC regenerati- 
on in both the cochlea and utricle in neonatal 
mice [72, 73]. A particularly exciting finding is 
that a genetic reprogramming process involv- 
ing β-catenin activation, Notch1 deletion, and 
Atoh1 overexpression is established and can 
promote extensive SC proliferation followed by 
mitotic HC regeneration [74].

Hedgehog signaling is important for the forma-
tion of the dorsoventral axis of the inner ear, 
and plays important roles in the prosensory 
domain formation [75], the progenitor prolifera-
tion, and HC differentiation during inner ear 
development [76]. The cell fate of progenitors, 
whether differentiate into vestibular cells or 
auditory cells, is depend on the balance be- 
tween Wnt and Hedgehog signaling [77, 78].  
A few studies have reported the roles of Hed- 
gehog signaling in mammalian HC regenera-
tion. Hedgehog signaling induces SC prolifera-
tion and HC regeneration in the postnatal rat 
cochlea after neomycin treatment [79], and 
Sonic Hedgehog recombinant protein effecti- 
vely promotes in vitro sphere formation, prolif-
eration, and differentiation of Lgr5+ progeni-
tors isolated from the neonatal cochlea. Hed- 
gehog signaling was also proved to induce SC 
proliferation and HC regeneration in neomyc- 
in damaged cochlea by using transgenic R26-
SmoM2 mice which constitutively activate Hed- 
gehog signaling in the SCs leads to [80].

Ephrins and their receptors Ephs also play role 
in HC regeneration. EphA4 receptor is expres- 
sed in HCs, while Ephrin-B2 is present in SCs, 
and this complementary pattern of expression 
is necessary for the establishment of the com-
partment boundary between HCs and SCs [81]. 
Jean Defourny et al. demonstrated that mam-
malian HCs can be directly generated from SCs 
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by inhibition of ephrin-B2 signaling. Using ei- 
ther ephrin-B2 conditional knockout mice, shR-
NA-mediated gene silencing, or soluble inhibi-
tors, they found that downregulation of ephrin-
B2 signaling at late embryonic stages after HC 
production, results in translocation of SC into 
HC layers and subsequent cell fate switch from 
SC to HC [81]. Interestingly, throughout inner 
ear development, Ephrin-B2 and Notch are ex- 
pressed in similar SC types [82]. Moreover, 
Ephrin-B2, whose expression is induced by 
Notch signaling, is reported to be a direct Not- 
ch signaling downstream target [83]; therefo-
re, Ephrin-B2 might be required following Not- 
ch lateral inhibition in order to segregate the 
SCs from adjacent HCs.

HC regeneration: epigenetic regulation

Epigenetic factors have recently emerged as 
important regulators in both inner ear develop-
ment and in HC regeneration. In the neuro-
masts of developing zebrafish larva, inhibition 
of the histone-modifying enzyme lysine-specific 
demethylase 1 (LSD1) disrupts cell prolifera-
tion, induces apoptosis, and reduces the num-
bers of sensory HCs and SCs [84]. And epigen-
etic regulation of Atoh1 was reported to guide 
HC development in the developing mouse co- 
chlea [10]. Inhibition of histone acetyltransfer-
ase activity reduces H3K9 acetylation at the 
Atoh1 locus and therefore prevents Atoh1 
mRNA increase and subsequent HC differen- 
tiation. Interestingly, the H3K4me3/H3K27me3 
bivalent chromatin structure, observed in pro-
genitors, persists at the Atoh1 locus in perina-
tal SCs [10], suggesting the important roles of 
such structures in HC regeneration.

Histone deacetylase (HDAC) inhibitor treatment 
of HC-damaged chicken utricles reduces prolif-
eration of SCs, but does not affect HC regener-
ation [63]. Similarly, inhibition of HDAC activity 
in HC-damaged zebrafish larvae also reduces 
SC proliferation and subsequent HC regenera-
tion [23]. Bmi1, a Polycomb group protein and a 
component of the Polycomb repressive com-
plex 1, maintains the proliferative capacity of 
SCs by sustaining high levels of Wnt signaling in 
the neonatal mouse cochlea. In neonatal Bmi1-
deficient cochleae, SCs fail to re-enter the cell 
cycle in response to HC damage, and the in 
vitro sphere-forming ability of Bmi1-deficient 
cochlear progenitors is also reduced [11].

Future perspectives

Although HC regeneration can be induced by 
many factors and signaling pathways in the 
neonatal mammalian cochlea, HCs cannot be 
regenerated in the adult mammalian cochlea 
and current technologies are still quite far from 
restoring hearing functions in the HC-damaged 
mammalian cochlea. Thus, further research is 
needed to find ways to induce HC regenerati- 
on in both the neonatal and adult mammalian 
cochlea. 

First, more pathways and important factors, 
including those that might regulate the prolif-
eration and differentiation of stem cells and 
progenitors, such as FGF, BMP4, and Hippo sig-
naling pathway, should be explored in the study 
of HC regeneration. The FGF signaling pathway 
has been shown to be important in inner ear 
development and to be related to the otic plac-
ode induction and the otic vesicle development 
[85-87]. Deletion of the FGF receptor 1 (Fgfr1) 
gene in the inner ear results in decrease of the 
number of proliferative prosensory cells and 
subsequent decrease of the numbers of HCs 
and SCs [88, 89]. The roles of the FGF signaling 
pathway in HC regeneration has been explored 
in the utricles of chickens and the lateral lines 
of zebrafish [90-93]. Many reports has shown 
that BMP4 plays important roles in mammali- 
an and non-mammalian inner ear development 
[94-100], and it is recently reported that BMP4 
can also antagonize HC regeneration in the 
avian auditory epithelium [101]. The Hippo/Yap 
signaling pathway plays important roles in de- 
velopment, homeostasis, and regeneration in 
many tissues and cancer cells [102-106], and  
it has been reported that Hippo/Yap controls 
proliferation and differentiation of lung and 
plays key roles in regeneration and fibrogenes- 
is after kidney injury. In zebrafish lateral line, 
Yap1 plays important roles in HC differentia-
tion. Knockdown of Yap1 in developing zebraf-
ish affects development of the lateral line sys-
tem and recapitulates the Prox1a deficiency in 
mechanosensory cells of neuromast [107]. All 
of the above factors and signaling pathways 
can be used as good candidates for further HC 
regeneration study in the mammalian inner ear. 
As mentioned above, many epigenetic regula-
tors such as LSD1, histone modifications, and 
HDAC inhibitors, which have been studied in 
inner ear development and HC regeneration in 
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non-mammalian organisms, are also very good 
candidates for studying HC regeneration in the 
mammalian inner ear.

Second, the interactions of multiple pathways 
in cell proliferation and HC differentiation sh- 
ould be explored. As mentioned above, some 
research has studied the cross talk between 
two or more signaling pathways and factors 
[72-74], but these studies are far from regener-
ating HCs and repairing inner ear damage in 
adult mammals. 

And lastly, the maturation and survival of new- 
ly generated HCs and HC regeneration in adult 
mammals still remains a challenge. Bradley 
Walters et al. found that combining p27Kip1 dele-
tion with ectopic Atoh1 expression surmounts 
age-related decline of HC regeneration from 
SCs, leading to conversion of SCs to HCs in 
mature mouse cochleae and after noise dam-
age [108]. Moreover, co-activation of GATA3 or 
Pou4f3 and Atoh1 promoted conversion of SCs 
to HCs in adult mice and activation of Pou4F3 
alone also converted mature SCs to HCs in vivo 
[108]. In another recent report, Yilai Shu et al. 
reported that transient co-activation of cell cy- 
cle activator Myc and inner ear progenitor gene 
Notch1 induces proliferation of diverse adult 
cochlear sensory epithelial cell types, and en- 
ables adult SCs to respond to transcription  
factor Atoh1 and efficiently trans-differentiate 
into HC-like cells [109]. Although it is excited  
to see these two recent reports that HC could 
now be regenerated from SCs in adult mice by 
genes and signaling regulation, the regenera-
tion efficiency and the maturation of regener-
ated HCs remains still a problem. More efforts, 
such as other genes and signaling co-regula-
tion, apoptosis inhibition and maturation in- 
duction of newly regenerated HCs, should be 
made in the future.

In summary, much effort has been put into 
exploring the mechanisms of HC regeneration 
in the mammalian inner ear, and many factors 
and signaling pathways have been shown to 
play important roles in the neonatal cochlea. 
However, these studies are still far from re- 
generating HCs and repairing HC damage in 
adult mammals, which is the ultimate research 
objective in this field.
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