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Review Article
Reciprocal signals between nerve and epithelium: how 
do neurons talk with epithelial cells?
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Abstract: Most epithelium tissues continuously undergo self-renewal through proliferation and differentiation of 
epithelial stem cells (known as homeostasis), within a specialized stem cell niche. In highly innervated epithelium, 
peripheral nerves compose perineural niche and support stem cell homeostasis by releasing a variety of neu-
rotransmitters, hormones, and growth factors and supplying trophic factors to the stem cells. Emerging evidence 
has shown that both sensory and motor nerves can regulate the fate of epithelial stem cells, thus influencing epi-
thelium homeostasis. Understanding the mechanism of crosstalk between epithelial stem cells and neurons will 
reveal the important role of the perineural niche in physiological and pathological conditions. Herein, we review 
recent discoveries of the perineural niche in epithelium mainly in tissue homeostasis, with a limited touch in wound 
repair and pathogenesis.
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The perineural niche of stem cell

Most epithelial tissues, like skin and the gastro-
intestinal tract, undergo a continuous replace-
ment of damaged or dead cells, known as tis-
sue homeostasis. This process is crucial for the 
maintenance of adult tissues [1, 2]. Epithelial 
tissue homeostasis requires epithelial stem 
cells, which are functionally characterized by 
their capability to self-renew and differentiate 
into the cell lineages as needed [3]. Adult stem 
cells also play a vital role in regenerating dam-
aged tissue after injury, which may respond to 
dysregulated signals from mutated cells such 
as cancer cells and behave abnormally [4]. 
Notably, stem cells exhibit incredible plasticity 
when local and systemic conditions vary [5, 6]. 

Adult stem cells reside within a specific micro-
environment, known as a stem cell niche. The 
stem cell niche regulates the self-renewal of 
stem cells and prevents their precocious differ-
entiation by regulating the secretion of growth 
factors and cytokines from stem cells them-
selves or surrounding niche cells. By using cell 
adhesion molecules and the extracellular ma- 
trix, stem cells keep undifferentiated and reside 
in place [7-12]. Given that almost all body tis-
sues are innervated by endings of peripheral 
nerves, nerves make synapse-like associations 
or bypass through stem cells in these tissues. 
Factors and neurotransmitters derived from 
nerves have been shown to activate and pro-
mote mitosis or differentiation of stem cells 
[13, 14], the perineural signals are emerging as 
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essential factors for the renewal and long-term 
maintenance of stem cells, regarding as peri-
neural niche.

The perineural niche is composed of the end-
ings of nerves, which usually function through 
electrical and neurotransmitter signaling under 
physiological condition. Sensory nerves con-
vert specific external and internal stimuli into 
electrochemical signals and carry the resulting 
nerve impulse to the central nervous system 
(CNS). Sensory receptors can be membrane-
bound gated receptors of a sensory nerve, such 
as the olfactory receptor or they can be special-
ized cells, such as cutaneous Merkel cells or 
taste receptor cells, which are innervated by 
sensory nerves [15-17]. Receptor cells usually 
make synapse-like associations with enlarged 
nerve terminals [18]. Motor nerves, which are 
divided into somatic and autonomic (or viscer-
al) motor nerves, relay stimuli from the CNS to 
peripheral effectors. Somatic motor nerves 
project axons into skeletal muscle while auto-
nomic motor nerves project axons into visceral 
muscle and some glands. Transmitters from 
autonomic nerves are released at various dis-
tances from their effector cells, resulting in a 
widespread diffusion of signals in a paracrine 
secretion pattern [19]. Other than their physio-
logical roles, the reciprocal signal communica-
tion between nerves and innervated cells is a 
critical component in the maintenance of the 
stem cell microenvironment.

Peripheral nerves have been shown to support 
tissue development, repair, and regeneration in 
lower organisms [20], and are emerging as key 
players in the perineural niche for mammalian 
stem cells now. Norepinephrine (NE) and ace-
tylcholine (Ach) are classic neurotransmitters 
for sympathetic neurons and parasympathetic 
neurons, respectively. Evidence has shown that 
NE from nerves can reduce the number of 
hepatic progenitor cells [21], while Ach signal-
ing stimulates the accumulation of hepatic pro-
genitor cells [22]. Loss of sympathetic nerves in 
bone marrow leads to premature aging-like 
changes in hematopoietic stem cells, resulting 
in poor bone marrow repopulating activity, 
myeloid bias, and polarity defects [23]. On the 
other hand, signals from non-nerve cells con-
trol the innervated nerve’s growth. Brown adi-
pose tissue thermogenesis requires innerva-
tion by the sympathetic neurons. Meanwhile, 

calsyntenin 3β in adipocytes facilitates func-
tional sympathetic innervation [24]. In injured 
liver, the reconstruction of nerve network 
depends on the NGF signaling from intrahepat-
ic bile ducts [25]. Moreover, interaction bet- 
ween nerves and adult stem cells has been 
found to greatly enhance the wound healing 
response following corneal and lung injury [26, 
27]. Notably, signals from nerves are also 
involved in many diseases, like tumorigenesis 
in the stomach, pancreas, prostate, intestine, 
and in the polycystic ovary syndrome [28, 29]. 
Thus, there is reciprocal signal communication 
between innervated tissues and the nerves.

Although the perineural niche has attracted 
researchers’ attention, the mechanisms of how 
the perineural niche functions in regulating 
stem cells remain largely unclear. Herein, we 
summarize recent research investigating the 
reciprocal signals between neurons and epithe-
lial cells in highly innervated epithelium tissues, 
including hair follicle, touch dome, taste bud, 
and gastrointestinal epithelia. We also discuss 
the mechanism underlying the crosstalk bet- 
ween the epithelial cell and neuronal cell in 
response to injury and in cancer in a less.

Crosstalk between nerve and epithelium

Hair follicle

The hair follicle (HF) is a complicated mini-
organ divided into infundibulum, isthmus, bulge 
and hair bulb. Its epithelium is consisted of the 
outer root sheath (ORS) and inner root sheath 
(IRS). Postnatal HFs undergo spontaneous 
cycles of regeneration through growth (ana-
gen), regression (catagen), and rest (telogen) 
status. HF stem cells (HFSCs) are essential for 
hair cycle. Multiple stem cell populations have 
been identified in the mouse telogen HF bulge 
and in the proliferative ORS during the anagen 
phase using the genetic biomarkers including 
K15, Lgr5, Lgr6, Sox9, CD34, Blimp1, Lrig1, 
Plet1, and Gli1 [30]. These stem cells provide 
the necessary number and type of specialized 
cells that take part in the hair cycle, with pre-
cise regulation by various factors, including 
those from the perineural niche. HFs are inner-
vated at the bulb and bulge including somatic 
sensory afferents and autonomic sympathetic 
nerves [31]. Sensory nerves not only feel the 
movement of hair [32], but support the Gli1-
expressing upper bulge (Gli1+) HFSCs as a peri-
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neural niche, participate in hair follicle growth 
when another anagen phase is initiated [33]. 
While autonomic nerves have also been evi-
denced to regulate HFSCs homeostasis in 
adult.

HFSCs are not only involved in hair follicle 
homeostasis but also play a vital role in skin 
regeneration and wound repair [34, 35]. Gli1+ 
HFSCs function as multipotent stem cells to 
repeatedly regenerate HFs when these bulge 
cells reside in their native perineural niche that 
release Sonic Hedgehog (SHH). With the sup-
port of the perineural niche, these stem cells 
migrate into skin wounds, help healing, trans-
form into interfollicular epidermal stem cells 
(Gli1+ K15-), and differentiate into epidermal 
keratinocytes. However, those epidermal stem 
cells cannot be maintained without the peri-
neural niche [33]. Although dispensable for fol-
licle contributions to acute wound healing and 
skin homeostasis, the sensory nerves are nec-
essary to maintain bulge cells capable of be- 
coming epidermal stem cells. Innervated upper 
bulge Gli1+ cells may constitute to a long-term 
stem cell depository, which can replenish the 
epidermis after injury. This study provides evi-
dence that stem cells are sustained in the peri-
neural niche. Additionally, the stem cells’ de- 
pendency on progeny provides a natural means 
for stem cells guiding them during normal 
homeostasis, when to start and expand tissue 
growth and when to stop. Moreover, when the 
regulatory progenitors are damaged upon wo- 
unding, the niche environment is also changed, 
enabling stem cells taking immediate actions 
accordingly to repair tissues.

Through crosstalk with neurons, HFSCs can be 
activated in response to external environmen-
tal changes. External light can activate HFSCs 
through intrinsically photosensitive retinal gan-
glion cells, which send signals to the supra- 
chiasmatic nucleus of the hypothalamus. The 
suprachiasmatic nucleus stimulates release of 
NE from sympathetic neurons to activate 
HFSCs [36]. Another study also demonstrated 
that cold-induced burst-release of NE from 
sympathetic nerves through synapse-like struc-
ture can accelerate HFSC activation to produce 
new hair coat, coupling tissue growth with en- 
vironmental changes [13]. On the other hand, 
SHH derived from HFSC progeny regulates 
arrector pili muscle formation and consequent-

ly maintains innervation. Since the activation of 
sympathetic nerves is not exclusive to HFs, it is 
noteworthy that such rapid adaptive responses 
may also happen in other homeostatic tissues.

In addition, studies have shown that chronic 
and sustained exposure to stress can signifi-
cantly affect the hair follicle homeostasis via 
perineural niche [37, 38]. Acute stress causes 
melanocyte stem cell (MeSC) loss and prema-
ture hair greying in mice, the depletion of Me- 
SCs during acute stress is induced by hyperac-
tivation of sympathetic nerves that innervate 
MeSC niche, rather than adrenal stress hor-
mones or immune attack [39]. The burst re- 
lease of NE from sympathetic nerves leads to 
rapid proliferation of quiescent melanocyte 
stem cells followed by their differentiation, 
migration, and permanent loss from the niche 
[39]. Stress-induced hair greying is prevented 
by transient suppression of the proliferation of 
melanocyte stem cells. These findings suggest 
the mechanism that systematic factor can reg-
ulate a stem cell population through the peri-
neural niche. However, it is still unclear that 
while stress is overcome, if the hair can turn 
back to black and the underlying mechanism.

Although there is little research assessing the 
reciprocal effect of stem cells on neurons, 
RNAseq analysis of mRNA expression profile of 
Gli1+ stem cells from adult telogen mice pro-
vides some clues. Genes highly expressed by 
Gli1+ stem cells include the ones involved in 
neuron differentiation (Duoxa1, Nbl1, Neurod2, 
Timp2, and Tcf12, etc.), neuron projection 
development (Snapin, Dguok, Dab2, and Lga- 
ls1, etc.), nervous system development (Lhx2, 
Smarca2, Nrn1, Nbl1, Neurod2, Nrbp2, Se- 
ma3e, and Tcf12, etc.), and synapse matura-
tion (Neurod2 and Nfatc4) [33]. It implies that 
resident stem cells may have an important role 
in attracting and supporting neuron projec- 
tions.

Touch dome

The touch dome (TD) is a highly innervated  
specialized skin appendage. It is a specific  
epidermal sensory structure consisting of 
K8-expressing Merkel cells (MCs) assembled 
amongst columnar basal keratinocytes that 
express K17. MCs and the peripheral sensory 
nerves form the MC-neurite complex through 
synaptic contact [40]. They are of particular 
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importance as the receptor of touch sensation 
[41]. Lineage tracing analysis has indicated 
that the entire pool of mature MCs is refreshed 
in the adult epidermis every 7-8 weeks [42], 
and new MCs regenerate after injury [43], indi-
cating the existence of stem cells that maintain 
the TD epithelium. MCs and the TD originate 
from K14+ epidermal stem cells [44, 45], and 
resident Gli1+ or K17+ stem cells also maintain 
the TD as a distinct epidermal lineage [42, 
46-48]. Study has shown that denervation of 
subcutaneous nerves from the dorsal root gan-
glion (DRG) leads to the gradual loss of MCs 
and TDs [46], which might be due to waning tro-
phic support from the DRG [48], suggesting 
that the perineural niche is critical for support-
ing the maintenance of the TD and its MCs.

During embryonic development, skin append-
age forming, including TDs, depends upon the 
extrinsic chemokines of BMPs, WNT, and SHH, 
mainly from the mesenchyme [49]; while at 
birth, when mature MC-neurite complexes fo- 
rm, signals from nerve endings, such as SHH, 
become essential for TD maintenance [46], 
indicating a niche switch before and after birth 
for supporting TDs. Conditional knockout of the 
Shh gene in DRGs results in the disappearance 
of TDs and MCs and the gradual loss of Gli1+ 
stem cells, which demonstrates that nerve-
derived SHH plays a key role in the self-renewal 
of TD stem cells. Interestingly, the presynaptic 
molecular signature is enriched in MCs, sug-
gesting that synaptic signaling may also partici-
pate in the communication between nerve and 
MCs [50]. So far, few nerve-derived molecules 
that regulate TD stem cells are identified. 
Because isolation of the small number of TD 
stem cells is a technical challenge, cutting-
edge techniques, such as single-cell RNA-Seq 
would help to reveal more information on the 
interplay between TD stem cell and perineural 
niche. Nevertheless, new findings are expected 
in the field of touch biology, such as the cellu- 
lar basis of how sensations are initiated. 
Moreover, touch and pain are closely related, 
thus the characterization of the underlying cel-
lular mechanisms of touch sensation would 
help better understand the pain as well.

Noteworthy, nerve endings projected to TD and 
MC undergo pruning and maturation during 
both prenatal and postnatal period [51, 52]. 
Two molecularly distinct populations of neurons 

with Ret+ and NFH+/TrkC+ sensory nerves in 
embryonic DRGs innervate MCs and TDs, 
whereas only TrkC+ sensory nerve innervation 
persists in adult TD [53]. Selective genetic ab- 
lation of K17+ TD keratinocytes suggests that 
K17+ TD, but not mature MCs, are mainly 
responsible for sustaining the innervation of 
the MC-neurite complex [42, 54]. It has been 
anticipated that neural cell adhesion molecules 
expressed on keratinocytes in the TD may facili-
tate MC innervation to maintain this perineural 
niche [55]. Additional mechanisms are rema- 
ined to be discovered for the innervation of the 
TD, that is important to study the MC-neurite 
complex, TD homeostasis, and the pathogene-
sis of diseases with abnormal touch sensation. 
Moreover, it is not completely understood how 
skin cells feel fine details and texture and dis-
tinguish itch and pain, especially in aging skin. 
Understanding the regulation of TD homeosta-
sis would help to understand how certain dis-
eases and aging influence the ability to sense 
of touch, which in turn would lead to develop 
new approaches for restoring the sense of 
touch.

Taste bud

Taste buds are specialized structures residing 
in the taste papillae of the tongue and are com-
ponents of the sensory epithelium. Taste buds 
contain a variety of highly innervated taste 
receptor cells (TRCs), which undergo regular 
self-renewal under normal homeostatic condi-
tions or upon injury [56, 57]. Fate mapping and 
genetic studies have identified Shh-expressing 
basal cells as the general precursors of all tas- 
te bud cell types [58]. SHH-responding cells 
(including Gli1+, Gli2+, Ptch1+, Smo+) are identi-
fied as progenitors for taste buds and are criti-
cal for taste bud functional homeostasis and 
injury recovery, within the support of a perineu-
ral niche [59-62].

Taste buds are innervated by the trigeminal, 
geniculate, and distal (petrosal) cranial nerve 
ganglia, whose axons transmit taste informa-
tion from peripheral taste buds to the hindbrain 
[63]. The taste organs (taste papillae and their 
resident taste buds) of the anterior tongue and 
soft palate are innervated by visceral sensory 
neurons (for taste) situated in the genicular 
ganglion, and by somatic sensory neurons (for 
touch and pain) in the trigeminal ganglion [64]. 
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The circumvallate papillae are innervated by 
visceral sensory neurons in the petrosal gan-
glion of the glossopharyngeal nerve, whereas 
the somatosensory neurons, projecting into the 
same papillae, are presumably situated in the 
proximal (superior) ganglion [65]. The role of 
neuronal innervation in the maintenance of the 
rabbit taste system was described 140 years 
ago, demonstrating that the transection of 
innervating sensory projections could lead to 
the degeneration of taste buds [66]. Dener- 
vation during perinatal development or in yo- 
ung postnatal rats will permanently impair the 
capacity of the gustatory epithelium to form 
taste buds and taste bud maturation [67]. In 
adult mammals, innervation is necessary for 
taste bud maintenance and differentiation. In 
the anterior tongue, unilateral transection of 
the chord-lingual nerve leads to the degenera-
tion of taste buds and the outgrowth of the fili-
form spine [68]. In the vallate papilla of rat, uni-
lateral nerve destruction leads to less taste 
buds [69]. In human, the damage of the chorda 
tympani and the glossopharyngeal nerves in 
patients undergoing oral surgery or surgery for 
chronic otitis media result in impaired taste 
sensitivity [70-74]. All of these suggest an 
essential niche composed by the peripheral 
nerves for the appropriate function of taste bud 
stem cells. Although the function of nerves in 
taste bud maintenance and regeneration has 
been described, the molecular mechanisms 
underlying nerve-stem cell interactions are not 
fully identified.

In human, the loss of TRCs also occurs when 
the Hh pathway is pharmacologically blocked, 
accounting for the loss of taste experienced  
by cancer patients [75-77]. These observations 
are consistent with the findings that loss of 
TRCs is associated with the blockade of the Hh 
pathway in mice [78-80]. Another study demon-
strates that SHH is not restricted in taste buds 
but is also expressed in sensory neurons. Ex- 
perimental ablation of neuronal derived SHH 
causes a loss of TRCs [81], and regeneration of 
stable TRCs requires neuronal SHH to ensure 
functional integrity, demonstrating that SHH 
signals from nerves can induce distal cellular 
responses. Thus, these findings provide an 
explanation of the loss of taste in cancer pa- 
tients treated with Hh pathway antagonists. 
The local use of Hh pathway agonists may be 
used to accelerate the recovery of taste sensa-

tion after radiotherapy or chemotherapy. On 
the other hand, neurotrophic brain-derived ne- 
urotrophic factor (BDNF) secreted by taste bud 
cells is an essential supporting factor for taste 
buds innervation, as removing BDNF leads to 
the loss of innervation of taste buds, and over-
expressing BDNF produces distinct gustatory 
axon morphologies that disrupt initial innerva-
tion of taste buds [81, 82]. Together, these 
results suggest that crosstalk between epithe-
lial cells and nerves are required to maintain 
integrity of structure and functions of taste 
buds. This crosstalk is very crucial as the peri- 
pheral neurons form close relationship with 
epithelia, and transmit the signals of environ-
mental stimulation to the brain.

Gastrointestinal epithelium

The gastrointestinal epithelium is a single layer 
of columnar cells that are organized into glands 
and pits in the stomach, crypts and villi in the 
intestine [83]. The epithelial cells consist of 
various functional cell types, which are gener-
ated from one or more stem cells located in the 
base or the isthmus of both gastric glands and 
intestinal crypts. The homeostasis of the gas-
trointestinal epithelium is driven by active Lgr5+ 
stem cells at the gland and crypt bases [84, 
85]. Besides Lgr5+ cells, the gastrointestinal 
tract harbors several other stem cell popula-
tions that are activated upon epithelial injury. 
Bmi1+ cells localize approximately four cell po- 
sitions from the crypt base and Troy+ derived 
chief cells localize at the bottom of the gastric 
corpus glands [86, 87]. These stem cells play  
a vital role in the maintenance of the gastroin-
testinal epithelium and rapid cell renewal in 
response to injury. Hence, to understand how 
the stem cells participate in pathological recov-
ery, such as injury and cancer, it is important to 
first dissect the stem cell behavior under physi-
ological conditions.

Unlike other tissues, the motility and secretion 
in the gastrointestinal tract is controlled by two 
nerve systems: the extrinsic sympathetic and 
parasympathetic nerves and the intrinsic enter-
ic nervous system (ENS) [88]. The ENS is com-
posed of neurons and enteric glial cells (EGCs) 
that are interconnected to form two ganglion-
ated plexuses-the myenteric and the submuco-
sal plexuses. The myenteric plexus forms a con-
tinuous network extending from the esophagus 
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to the internal anal sphincter while the submu-
cosal plexus is present in the small and large 
intestines. Because there are intact neuronal 
circuits within the intestine, the function of the 
intestine can be controlled independent of the 
CNS, and the stomach is primarily controlled by 
extrinsic nerves.

Within the stomach, nerve fibers form a dense 
network that also encompasses gastric glands 
[89, 90], building a paracrine communication 
between epithelial cells and neurons. Neuronal 
Ach stimulates epithelial stem cell division via 
the muscarinic receptor-3 (M3R) that is expre- 
ssed in Lgr5+ cells. Co-culture with neuronal 
Ach-secreting neurons promotes the growth of 
normal gastric organoids, but not M3R-defici- 
ent gastric organoids [91]. Loss of epithelial 
M3R expression in mice results in decreased 
epithelial stem cell proliferation upon injury 
[92]. In gastric cancer, Ach induces the secre-
tion of nerve growth factor (NGF) from epitheli-
al cells, and NGF facilitates the growth of ner- 
ves, which accounts for the promotion of can-
cer stem cell proliferation and the aberrant 
innervation [92]. Although clinical relevance 
has been shown for perineural innervation in 
gastric cancer [92, 93], the detailed molecular 
mechanisms are not fully understood.

As the luminal surface of intestine is continu-
ously exposed to a variety of potentially damag-
ing factors including toxins and infection, the 
neurons could interact with intestinal epithelial 
stem cells to help safeguard, repair and recover 
from the injury. In the intestine, both enteric 
neurons and EGCs surround the base of crypts 
throughout the villi. They also directly contact 
enteroendocrine cells residing in the epithelium 
[94, 95]. There is evidence that the ENS stimu-
lates intestinal epithelial growth and repair. 
Treatment with glucagon-like peptide 2 (GLP-2), 
a product of intestinal enteroendocrine L-cells, 
acts on enteric neurons rather than epithelium, 
which, in turn, stimulates the stem cells in 
crypts leading to increased proliferation of epi-
thelial cells [96]. Co-culture of intestinal stem 
cells with enteric neurons and EGCs in vitro pro-
motes the differentiation of the stem cells into 
chemosensory enteroendocrine cells, indicat-
ing that the ENS contributes to intestinal stem 
cell fate determination [97]. EGCs are also th- 
ought to play an important role in maintaining 
the intestinal epithelium barrier. Conditional 

ablation of EGCs increases mucosal damage 
and significantly delays mucosal wound heal-
ing, whereas EGCs enhance epithelial recovery 
and cell spreading through soluble proEGF in 
vitro [98]. Molecular mechanisms have been 
revealed that EGCs secrete 15d-PGJ2, a pros-
taglandin ligand, and TGF-β1 to inhibit intesti-
nal cell proliferation, while 15d-PGJ2 also pro-
motes intestinal differentiation [99, 100]. Mo- 
reover, EGCs release prostaglandin E2 (PGE2) 
upon activation by tumor cell-derived IL-1 in 
colon cancer, promoting cancer stem cell-driv-
en tumorigenesis [101]. Thus, not only neurons 
but also glial cells are functioning in the ENS, 
which suggests that Schwann cells and satel-
lite cells in the peripheral nervous system may 
also play a role in the perineural niche of epi-
thelial stem cells.

Perspectives

Investigations of perineural niche in the epi- 
thelium tissues described above suggest an 
important crosstalk via retrograde paracrine 
signals between epithelial stem cells and neu-
rons. The importance of the crosstalk is not lim-
ited in the tissues we addressed above (Table 
1). For instance, corneal nerves that mostly 
originate from terminal ganglia (TG) are impor-
tant for maintaining ocular surface homeosta-
sis and tissue clarity [102-104]. Many diseases 
affecting cornea can compromise corneal in- 
nervation, leading to decreased tear produc-
tion and blink reflex as well as impaired epithe-
lial wound healing [105-107], thus corneal epi-
thelium is a valuable system to study the pe- 
rineural niche as well. Skin being the largest 
sensory organ is innervated by various types of 
fibers of primary sensory neurons, comprising 
of mechanoreceptors, nociceptors, and pro-
prioceptors [108]. There are much more to 
explore for how distinct neurons talk with skin 
epithelial cells, and participate in the homeo-
stasis and wound healing of skin. Reciprocally, 
skin derived cues have been found to influence 
innervation as well [109, 110], making skin an 
elegant model to study the underlying molecu-
lar mechanism that how epithelial cells talk 
with neurons. More findings are likely to emer- 
ge from the characterization of perineural stem 
cell niche during development and pathogene-
sis. The application of cutting-edge molecular 
tracing and single-cell technology may eluci-
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Table 1. Crosstalk between nerves and epithelium
Stem Cells Innervated Neuron Type Mechanism Reference
Gli1+ upper 
bulge hair follicle 
stem cells

Sensory nerves ♦ SHH derived from sensory nerves supports the upper bulge Gli1+ HFSCs in hair follicle growth during hair cycle.
♦ SHH derived from sensory nerves supports the upper bulge Gli1+ HFSCs in differentiation into epidermal  
keratinocytes during skin wound healing.
♦ Gli1+ stem cells from adult telogen mice highly express genes that participate in neuron development,  
differentiation, and synapse maturation.

[33]

Bulge and hair 
germ stem cell 
in hair follicle

Sympathetic nerves ♦ External light signals activate bulge and hair germ stem cells by M1-type intrinsically photosensitive retinal 
ganglion cells-suprachiasmatic nucleus-sympathetic neural pathway.
♦ NE released from sympathetic nerves regulates SHH signaling to activate HFSCs leading to hair follicle regen-
eration.
♦ Under cold conditions, elevated sympathetic system releases NE triggering the activation of HFSCs in the bulge 
and hair germ to enter anagen.

[13, 36]

Hair follicle stem 
cell 

Sympathetic nerves ♦ SHH derived from HFSC progeny regulates arrector pili muscle formation and consequently maintains innerva-
tion.

[13]

Melanocyte stem 
cell (MeSC)

Sympathetic nerves ♦ Acute-stress activates sympathetic nerves leading to burst release of NE, which causes quiescent MeSCs to 
proliferate rapidly. 
♦ The proliferated MeSCs is followed by their differentiation, migration and permanent depletion from the niche, 
resulting in hair graying.

[39]

Gli1+ touch 
dome stem cells

Sensory nerves projected from 
dorsal root ganglions

♦ SHH released from sensory nerves maintains and supports the TD and MCs after birth.
♦ Overactivation of SHH signaling in Gli1+ touch dome stem cells induce expansion of K17+ touch dome cells but 
not MCs.

[46, 47, 50]

K17+ touch 
dome stem cells

NFH+/TrkC+ nerves projected from 
dorsal root ganglions

♦ The number of TD afferents is decreased after ablation of K17+ touch dome stem cells rather than MCs. [42, 53]

Gli1+ Taste bud 
stem cells

Chorda tympani nerves  
projected from geniculate ganglion

♦ Ablation of neuronal derived SHH causes a loss of TRCs.
♦ BDNF secreted by TRCs supports taste bud innervation.

[82, 111]

Lgr5+ Epithelial 
stem cells in the 
stomach

ChAT+ nerves ♦ Vagotomy suppresses gastric tumorigenesis.
♦ Ach released from epithelial Dclk1+ tuft cells in the early stage of gastric tumorigenesis stimulates Lgr5+ stem 
cell division via M3R, activates YAP signaling pathway and consequent Lgr5+ stem cell expansion.
♦ Ach induces the secretion of NGF from epithelial cells, which in turn facilitates the growth of nerves producing 
more Ach. This feed-forward Ach-NGF circuit activates gastric tumorigenesis and offers a compelling target for 
clinical treatment.

[82, 111]

Lgr5+ Intestinal 
stem cells

Enteric nerves ♦ GLP-2 derived from intestinal enteroendocrine L-cells, acts on enteric neurons, which stimulates the stem cells 
in crypts leading to increased proliferation of epithelial cells.

[96, 112]

Intestinal stem 
cells

Enteric glial cells (one of the  
components in enteric neuron 
system)

♦ Conditional ablation of EGC induces crypt cell hyperplasia but worsens intestinal mucosal damage and delays 
mucosal healing.
♦ EGCs-secreted proEGF activates the focal adhesion kinase in intestinal epithelial cells enhancing epithelial 
recovery and cell spreading.
♦ EGCs-secreted TGF-β1 inhibits intestinal cell proliferation and increases cell surface area.
♦ 15d-PGJ2 secreted by EGCs inhibits proliferation in intestinal cells but promotes differentiation in them through 
PPARγ activation.

[98]

CD44+/CD133+ 
Colon cancer 
stem cells

Enteric glial cells ♦ Tumor cells stimulate EGCs to acquire a pro-tumorigenic phenotype by the release of IL-1.
♦ IL-1 increases PGE2 production and release from EGCs, promoting colon cancer stem cells proliferation via a 
PGE2/EP4/EGFR-dependent pathway.

[101]
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date further information and better clarify 
underlying mechanisms.

Nevertheless, further study is required to inves-
tigate the communications between nervous 
system and stem cells in other tissues and 
organs. The periphery nerves wire environmen-
tal cues and mental emotion with stem cell fate 
in organs of the body. The studies of perineural 
niche help us better understand how the extrin-
sic stimuli and our mood affect the tissue 
homeostasis and disease development. Under- 
standing of the stem cell perineural niche would 
advance the research of stem cell regulation 
and the clinical application of stem cells in tis-
sue regeneration. Moreover, these researches 
will be helpful to understand the effect of men-
tal health like stress on body tissues, as well as 
the effect of stimuli from outside to the nervous 
system.
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